Segmentation

Introduction

The aim of the analysis is to compare different segmentation algorithms through different platforms.

The following section is a comparison between the segmentation from eCognition and the segmentation from ArcGis Pro.

eCognition Multiresolution Segmentation parameters are divided in homogeneity criteria "Shape", corresponding to values of shape and color, and "Compactness", related to the smoothness of the segment.

- Higher values in "Shape", 0.9, more importance on the pixel shape and less importance on the pixel color.
- Higher values in "Compactness" equals more smoothness.

ArcGis Pro Segmentation has two main parameters: "Spectral detail", related to the similarities of the spectrum or color, and "Spatial detail", proximity between the futures. The third parameter is "Minimum segment size" related to the minimum mapping unit, the smaller segment size is merged with the best fitting neighbor.

- Higher values in "Spectral detail" as 20.0 define more spectral separability between similar spectrums. Lower values 1.0 merge more range of spectrums.
- Higher values in "Spatial detail" as 20.0 makes the features smoler and clustered together. Low values as 1.0 allow big segmentation polygons.
- Higher values "Minimum segment size" merge segments to the best fitting neighbor.

Methodology

The procedure consists of two segmentations in eCognition and three segmentations from ArcGis Pro.

- 1. eCognition Multiresolution Segmentation 1 parameters:
 - "Shape" 0.3
 - "Compactness" 0.9

			Edit Process			? ×		
			Name		 Algorithm Description Apply an optimization procedure which locally minimizes the average heterogeneity of image objects for a given resolution. 			
			Algorithm	500	Algorithm parameters			
		mult		mentation	Parameter	Value		
					Overwrite existing level	Yes		
			Domain —		Level Settings	New Level 12, 2000		
			pixel level		Compatibility mode	latest version		
	Segmentation Settings		Parameter	Value	Segmentation Settings			
			Condition		Image Layer weights			
	Image Layer weights	1, 1, 1, 1, 1, 1, 1	Мар	From Parent	Thematic Layers			
	The second second	r 1			4 Composition of homogeneity criterion			
	Thematic Layers	11			Shape	0.3		
	Scale parameter	200			Compactness			
	Composition of homogeneity criterion		C Loops & Cycles					
	Shape	0.3	Loop while some	thing changes only				
	Compactness	0.9	Number of cycles 1					
					Execute	Ok Cancel Help		

Figure 1. Parameter eCognition segmentation 1.

2. eCognition Multiresolution Segmentation 2 parameters:

- "Shape" 0.9
- "Compactness" 0.5

								2 X
			Edit Process					
			_ Name			Algorithm Description		
		Apply an optimization procedure which locally minimizes the image objects for a given resolution.			ich locally minimizes the average heteroger	neity of		
		Segmentation_L3_100			Algorithm parameters			
			Agontrim	Avgontom		Parameter	Value	
							Yes	
		- Domain			✓ Level Settings	Level Settings		
			pixel level •		•	Level Name	New Level_L3	
					Compatibility mode	latest version		
			Parameter	vaue		Segmentation Settings		
			Man	From Parent		Dematic Lavers	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			indp			Scale parameter	100	
	Segmentation Settings					Composition of homogenetics	neity criterion	
	N Jacob Jacob State					Shape		
	P Image Layer weights	1, 1, 1, 1, 1, 1, 1				Compactness	0.5	
	Thematic Layers	[]						
	Scale parameter	100	Loops & Cycles					
	 Composition of homogeneity criterion 		Loop while somet	hing changes only				
	Shape	0.9	Number of cycles	1	•			
	Compactness	0.5				Execute	Ok Cancel	Help
								~

Figure 2. Parameter eCognition segmentation 2.

- 3. ArcGis Pro Segment Mean Shift 1 parameters:
 - "Spectral detail" 15
 - "Spatial detail" 5
 - "Minimum segment size" 20

Geoprocessing	~	‡ \times						
Segment Me	an Shift	\oplus						
Parameters Environments		?						
Input Raster								
Sentinel2A_subset_bands_BGF	RNir4MIR1MIR2.ti	· 🚞						
A Output Raster Dataset		_						
ascGisProSegmented1_Sentin	ascGisProSegmented1_Sentinel2A_subset_bands_I 🧁							
Spectral Detail		15						
Spatial Detail		5						
Minimum Segment Size In Pixels		20						
Band Indexes								
Maximum Segment Size In								
Pixels		-1						

Figure 3. Parameter ArcGis Pro Segment Mean Shift 1.

- 4. ArcGis Pro Segment Mean Shift 1 parameters:
 - "Spectral detail" 19
 - "Spatial detail" 17
 - "Minimum segment size" 5

€	Segment Mean Sh	ift 🕀
arameter	Environments	(2
Input Rast	er	
Sentinel2	A_subset_bands_BGRNir4M	IR1MIR2.ti 👻 🧀
Output Ra	ster Dataset	
16Sentine	I2A_subset_bands_BGRNir4	MIR1MIR2.tif 🦳
Spectral D	letail	19
Spatial De	tail	17
Minimum Pixels	Segment Size In	5
Band Inde	xes	

Figure 4. Parameter ArcGis Pro Segment Mean Shift 2.

- 5. ArcGis Pro Segment Mean Shift 1 parameters:
 - "Spectral detail" 19
 - "Spatial detail" 17

• "Minimum segment size" 15

Figure 5. Parameter ArcGis Pro Segment Mean Shift 3.

eCognition	Scale (max-	Segmentation	Segmentation	ArcGis Pro	Scale (max-	Segmentation	Segmentation	Segmentation
parameters	min)	1	2	parameters	min)	1	2	3
Shape (spatial)	0.9 - 0.1	0.3	0.9	Spectral	20.0 - 1.0	15	19	19
Shape (color/spectral)	0.9 - 0.1	0.7	0.1	Spatial	20.0 - 1.0	5	17	17
Compactness	0.9 - 0.1	0.9	0.3	Minimum segment	20.0 - 1.0	20	5	15

Table 1. Table of segmentation parameters.

<u>Results</u>

Figure 6. Segmentation 1 eCognition.

Figure 7. Segmentation 2 eCognition.

Figure 8. Segmentation 1 ArcGis Pro.

Figure 9. Segmentation 2 ArcGis Pro.

Figure 10. Segmentation 3 ArcGis Pro.

Discussion

The results between the ArcGis Pro and eCognition are different even though the parameters of the algorithms take into account similar properties as it is explained in the introduction and compared on the table1. The parameters of Spatial and Spectral detail would be similar to the Shape parameter, and the Minimum Segment similar compared to the Compactness. But it hasn't been that way.

The first segmentation form eCognition fig.6 and the first segmentation of ArcGis Pro fig.8 have similar parameters in proportion, but the results are completely different.

In order to compare results visually the parameters of analysis had been changed (table 1.). The fig1 to the fig2 can be compared with the fig4 and fig5. Analyzing the results we can say that the ArcGis Pro segmentation (fig4 and fig5) have a major influence on the parameter color, as it makes a big segment polygon of all the forest together. On the other hand the segmentation of eCognition (fig1 and fig2) makes more differences between the same element, there are more forest segments. The eCognition seems to have a higher dependency on the compactness for the segment polygons, as in the case the forest generates more segments.

To summarize, the different algorithms and the parameters can not be directly compared as the result of the two algorithms are different.